زیرگروه های فازی برخی گروه های متناهی خاص

thesis
abstract

در این پژوهش یک رابطه ی هم ارزی بر روی مجموعه ی تمام زیرمجموعه های فازی گروه g تعریف کرده ایم. با توجه به این رابطه ی هم ارزی برای محاسبه ی تعداد زیرگروه های فازی متمایز گروه g کافی است تعداد زنجیرهای از زیرگروه های g که به g ختم می شوند را محاسبه کنیم. در این زمینه اصل شمول-عدم شمول دارای نقش اساسی است. در بسیاری از موارد از جمله در گروه دوری، p-گروه آبلی مقدماتی، رده ای خاص از گروه هامیلتونی، گروه دووجهی و گروه دودوری این اصل ما را به روابط بازگشتی می رساند. برخی از این روابط بازگشتی به آسانی قابل حل هستند. در مورد یک گروه دودوری با توجه به اینکه هر زیرگروه ماکسیمالش دوری یا دودوری است و تعداد زیرگروه های فازی متمایز یک گروه دوری را می توان محاسبه نمود، با استفاده از اصل شمول-عدم شمول یک رابطه ی بازگشتی را ارائه کرده ایم که در برخی از حالت های خاص از جمله زمانی که گروه دودوری یک گروه چهارگان تعمیم یافته است قابل حل می باشد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

توان های سرشت های تحویل ناپذیر گروه های متناهی

فرض کنیم x یک سرشت تحویل ناپذیر از یک گروه متناهی ناآبلی G باشد. برای اعداد صحیح نا منفی n و m با شرط m + n > 0، در این مقاله حالتی که تمام موسس های تحویل ناپذیر سرشت xn xm سرشت های خطی G هستند مورد بحث قرار می گیرد. در مقاله ای ریاضی دان معروف به نام مان ثابت کرد که اگر G یک گروه متناهی و x یک سرشت تحویل ناپذیر G باشد و تمام موسس های تحویل ناپزیر x2 خطی باشند، آن گاه (Ǵ≤Z(G و لذا G گروهی پوچ ت...

full text

زیرگروه های گروه های فازی

گروه ها‎ ‎‎و نظریه فازی در علوم مختلفی نظیر ریاضیات، علوم رایانه، رایانه و مهندسی برق کاربرد فراوانی دارد. از این رو، شمارش تعداد زیرگروه های فازی، گروه های متناهی برای طبقه بندی آن ها، یک موضوع مهم در نظریه فازی است. هدف اصلی این پایان نامه محاسبه تعداد زیرگروه های فازی گروه های متناهی می باشد، به ویژه ‎‎ارائه یک فرمول بازگشتی برای محاسبه تعداد زیرگروه های فازی گروه های دوری متناهی ‎$‎‎‎ g=‎‎m...

15 صفحه اول

درجه نرمال بودن زیرگروه گروه های متناهی

درجه جابجایی یک گروه یکی از مفاهیم تعریف شده در نظریه احتمالی گروه هاست، که می تواند نقش مهمی در معرفی خواص و برخی ساختار آن گروه داشته باشد.این درجه برای اولین باردر سال 1944 توسط میلر معرفی شد، که با استفاده از آن توانست احتمال جابه جا شدن دو عنصر دلخواه در یک گروه متناهی را به دست آورد در این پایان نامه به معرفی درجه جابجایی یک گروه متناهی و تعمیم های حاصل از آن پرداخته شده است، یکی از تعمی...

15 صفحه اول

مساله ای احتمالاتی در زیرگروه های فازی متمایز یک گروه

در این مقاله، ابتدا تعریف جابجا شدن دو زیرگروه فازی یک گروه بیان شده، سپس احتمال جابجا شدن دو زیر گروه فازی متمایز گروه zpn که تکیه گاهشان دقیقا zpm است به دست آورده شده است.

full text

s-تکمیل های زیرگروه های ماکسیمال گروه های متناهی

فرض کنیم g یک گروه متناهی باشد و m زیرگروه ماکسیمال آن باشد. در این صورت c را یک تکمیل برای m گوییم هرگاه c مشمول m نباشد ولی زیرگروه های g-پایا و واقعی c مشمول m باشد. زیرگروه c را تکمیل ماکسیمال گوییم هرگاه تکمیل دیگری برای m موجود نباشد که شامل c باشد. در این پایان نامه با ضعیف تکمیل ماکسیمال به s-تکمیل شرایط حلپذیری و زیرحلپذیری g را بررسی می کنیم.

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه یزد

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023